信息详情

当前位置: 首页 > 铝合金铸造的应力和裂纹的种类以及铝合金铸造浇注温度对铸件的影响

铝合金铸造的应力和裂纹的种类以及铝合金铸造浇注温度对铸件的影响

1、浇注温度过高将大大提高废品比例


浇注温度过高会引起砂型涨大,特别是具有复杂砂芯的灰铸铁件,当浇注温度≥1420℃时废品增多,浇注温度为1460℃时废品达50%。在生产中,利用感应电炉熔炼能较好地控制铁液温度。


2、浇注温度过低时可能形成的缺陷


(1)硫化锰气孔


此种气孔位于灰铸铁件表皮以下且多在上面,常在加工后显露出来,气孔直径约2~6mm。有时孔中含有少量熔渣,金相研究表明,此缺陷是由MnS偏析与熔渣混合而成,原因是浇注温度低,同时铁液中含Mn和S量高。


这样的含S量和适宜的含Mn量(0.5%~0.65%),可以显著改善铁液纯度,从而有效地防止这类缺陷。


(2)砂芯气体引起的气孔


气孔和多空性气孔常因砂芯排气不良而引起。因为造芯时砂芯多在芯盒中硬化,这常使砂芯排气孔数量不够。为了形成排气孔,可在型芯硬化后补充钻孔。


(3)液体夹渣


加工后灰铸铁件表皮之下会发现一个个单体的小孔,孔的直径一般为1~3mm。个别情况下只有1~2个小孔。金相研究表明,这些小孔与少量的液体夹渣一起出现,但该处未发现S的偏析。研究表明,这种缺陷与浇注温度有关,浇注温度高于1380℃时,铸件中未发现这种缺陷,故浇注温度应控制在1380—1420℃。值得一提的是改变浇注系统设计,未能消除此缺陷,故此种缺陷可以认为是由于浇注温度低以及铁液在微量还原气氛下浇注时形成的。



1.铸造应力


铸造应力按产生的原因不同,主要可分为热应力、收缩应力两种。


(1)热应力


铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力,称热应力。热应力使冷却较慢的厚壁处受拉伸,冷却较快的薄壁处或表面受压缩,铸件的壁厚差别愈大合金的线收缩率或弹性模量愈大,热应力愈大。定向凝固时,由于铸件各部分冷却速度不一致,产生的热应力较大,铸件易出现变形和裂纹。


(2)收缩应力


铸件在固态收缩时,因受铸型、型芯、浇冒口等外力的阻碍而产生的应力称收缩应力。、一般铸件冷却到弹性状态后,收缩受阻都会产生收缩应力。收缩应力常表现为拉应力。形成原因一经消除(如铸件落砂或去除浇口后)收缩应力也随之消之,因此收缩应力是一种临时应力。但在落砂前,如果铸件的收缩应力和热应力共同作用其瞬间应力大于铸件的抗拉强度时,铸件会产生裂纹。


2.减小和消除铸造应力的措施


(1)合理地设计铸件的结构


铸件的形状愈复杂,各部分壁厚相差愈大,冷却时温度愈不均匀,铸造应力愈大。因此,在设计铸件时应尽量使铸件形状简单、对称、壁厚均匀。


(2)采用同时凝固的工艺


所谓同时凝固是指采取一些工艺措施,使铸件各部分温差很小,几乎同时进行凝固。因各部分温差小,不易产生热应力和热裂,铸件变形小。设法改善铸型、型芯的退让性,合理设置浇冒口等。同时凝固的示意图,该工艺是在工件厚壁处加冷铁,冒口设薄壁处。


3.铸件的裂纹与防止


当铸造内应力超过金属的强度极限时,铸件便产生裂纹。裂纹是严重的铸造缺陷,必须设法防止。裂纹按形成的温度范围分为热裂和冷裂两种。


(1)热裂


①热裂的产生

一般是在凝固末期,金属处于固相线附近的高温时形成的。其形状特征是裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色。铸件结构不合理,合金收缩大,型(芯)砂退让性差以及铸造工艺不合理等均可引发热裂。钢和铁中的硫、磷降低了钢和铁的韧性,使热裂倾向增大。


②热裂的防止

合理地调整合金成分(严格控制钢和铁中的硫、磷含量),合理地设计铸件结构,采用同时凝固的原则和改善型(芯)砂的退让性,都是防止热裂的有效措施。


(2)冷裂


①冷裂的产生

冷裂是铸件冷却到低温处于弹性状态时所产生的热应力和收缩应力的总和,如果大于该温度下合金的强度,则产生冷裂。冷裂是在较低温度下形成的,其裂缝细小,呈连续直线状,缝内干净,有时呈轻微氧化色。壁厚差别大、形状复杂的铸件,尤其是大而薄的铸件易于发生冷裂。


②冷裂的防止

凡是减小铸造内应力或降低合金脆性的措施,都能防止冷裂的形成。例如:钢和铸铁中的磷能显著降低合金的冲击韧性,增加脆性,容易产生冷裂倾向,因此在金属熔炼中必须严格加以限制。

我们会认真查阅您反馈的每一个问题,并尽快给您答复,在这里您可以提出遇到的问题,也可以发表自己的建议和想法。

问题与建议描述:
为了让您尽快得到反馈,请留下您的联系方式:
验证码: